
Automatic Code Generation for an Asynchronous
Task-based Runtime

Muthu Baskaran, Benoit Meister, Tom Henretty, Sanket Tavarageri, Benoit Pradelle,
Athanasios Konstantinidis, and Richard Lethin

Reservoir Labs Inc.
632 Broadway Suite 803

New York, NY
baskaran@reservoir.com

ABSTRACT
Hardware scaling considerations associated with the quest
for exascale and extreme scale computing are driving sys-
tem designers to consider event-driven-task (EDT)-oriented
execution models for executing on deep hardware hierar-
chies. Further, for performance, productivity, and code sus-
tainability reasons, there is an increasing demand for auto-
parallelizing compiler technologies to automatically produce
code for such asynchronous EDT-based runtimes. How-
ever achieving scalable performance in exascale systems with
auto-generated codes is a non-trivial challenge. Some of
the key requirements that are important to achieving good
scalable performance across many exascale execution mod-
els and systems are: (1) scalable dynamic creation of task-
dependence graph and spawning of tasks, (2) scalable cre-
ation and management of data blocks and communications,
and (3) dynamic scheduling of tasks and movement of data
blocks for scalable asynchronous execution. In this paper, we
develop capabilities within R-Stream - an automatic source-
to-source optimization compiler - for automatic generation
and optimization of code targeted towards Open Commu-
nity Runtime (OCR) - an exascale-ready asynchronous task-
based runtime. We demonstrate the effectiveness of our
techniques through performance improvements on a bench-
mark and a proxy application that are relevant to the exas-
cale community.

1. INTRODUCTION
New processor and system architectures are being inves-

tigated and designed for exascale computing to address the
principal constraints in reaching exascale, namely, power,
performance, and resilience. An important characteristic of
envisioned exascale hardware to improve power efficiency is
near threshold voltage (NTV) – lowering supply voltage near
threshold – that causes variations in device performance in
addition to the intrinsic imbalance from the application it-
self. This means that mechanisms for dynamic load bal-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ancing increase in importance for near threshold computing
(NTC).

Another aspect of exascale architectures is that the hier-
archy of the hardware, which is currently at 3-5 levels (core,
socket, chassis, rack...) will extend to 10 or more levels
(3-4 levels on chip, and another 6+ levels of system pack-
aging). In current systems, execution models address these
levels through loop blocking or tiling [8], and stacked hetero-
geneous execution models (e.g., MPI+OpenMP). Such ap-
proaches will become cumbersome (program size, etc.) with
the envisioned 10+ levels.

Event-driven task (EDT) execution models are emerging
as an effective solution for new exascale architectures. Es-
pecially, EDT execution models are a very attractive choice
for NTC and for seamlessly addressing deep hierarchy of
processors and memories.

The EDT model supports the combination of different
styles of parallelism (data, task, pipeline). At a very high-
level, the EDT program expresses computation tasks which
can: (1) produce and consume data, (2) produce and con-
sume control events, (3) wait for data and events, and (4)
produce or cancel other tasks. Dependences between tasks
must be declared to the runtime, which keeps distributed
queues of ready tasks (i.e., whose dependences have all been
met) and decides where and when to schedule tasks. Work-
stealing is used for load-balancing purposes [2].

It is impractical to expect programmers to write directly
in EDT form; the expression of explicit dependences is cum-
bersome, requiring a significant expansion in the number of
lines of code, and opaque to visual inspection and debug-
ging. Direct EDT programming might be done in limited
circumstances by some hero programmers, or in evaluation
and experimentation with this execution model.

A high-level compiler and optimization tool is a key com-
ponent of an exascale software stack, primarily, to attain
performance, programmability, productivity, and sustain-
ability for application software. R-Stream is a source-to-
source automatic parallelization and optimization tool tar-
geted at a wide range of architectures including multicores,
GPGPU, and other hierarchical, heterogeneous architectures
including the exascale architectures. Without automatic
mapping, the management of extreme scale features will re-
quire longer software programs (more lines of code) to be
written, thus require more effort to produce software, will be
less portable, and may be error-prone. R-Stream provides
advanced polyhedral optimization methods and is notable
for features that can transform programs to find more con-

currency and locality, and for features that manage commu-
nications and memory hardware explicitly as a way of saving
energy.

There are multiple EDT-based runtimes being developed
in the community for exascale systems such as Open Com-
munity Runtime (OCR) [5], Concurrent Collections (CnC)
[4], SWift Adaptive Runtime Machine (SWARM) [6], Realm
[9], Charm++ [7], and others. In a previous work [10], we
had developed a hierarchical mapping solution using auto-
parallelizing compiler technology to target three different
EDT runtimes - OCR, CnC, and SWARM. Specifically, we
had developed (1) a mapping strategy with selective trade-
offs between parallelism and locality to extract fine-grained
EDTs, and (2) a retargetable runtime API that captures
common aspects of the EDT programming model and uni-
formizes translation, porting, and comparisons between the
different runtimes.

In this paper, we describe a dedicated backend in R-Stream
for OCR to automate the synthesis of “scalable” OCR codes
from simple sequential codes. To this end, we use advanced
code analysis and transformation strategies of the R-Stream
compiler.

2. BACKGROUND

2.1 R-Stream Compiler
R-Stream is a high-level automatic parallelization tool,

performing mapping tasks, which include parallelism extrac-
tion, locality improvement, processor assignment, managing
the data layout, and generating explicit data movements.
R-Stream take sequential programs written in C as input,
automatically determines the mapping based on the target
machine, and emits transformed code. While R-Stream han-
dles high-level transformations, the resulting source code
still needs to be compiled via a traditional low-level com-
piler.

R-Stream works by creating a polyhedral abstraction from
the input source. This abstraction is encapsulated by a gen-
eralized dependence graph (GDG), the representation used
in the R-Stream polyhedral mapper.

R-Stream explores an unified space of all semantically le-
gal sequences of traditional loop transformations. From a
statement-centric point of view in the polyhedral abstrac-
tion, such a sequence of transformations is represented by
a single schedule (i.e. a rectangular parametric integer ma-
trix). The R-Stream optimizer adds capabilities to express
the mathematical link between high-level abstract program
properties and variables in this unified space. These proper-
ties include parallelism, locality, contiguity of memory ref-
erences, vectorization/SIMDization and data layout permu-
tations.

2.2 OCR
OCR is an open-source runtime system that presents a

set of runtime APIs for asynchronous task-based parallel
programming models suited for exascale systems. The main
paradigms in OCR are: (1) Event-driven tasks (EDTs), (2)
Data Blocks (DBs), and (3) Events. All EDTs, DBs, and
events have a global unique ID (GUID) that identifies them
across the system.

EDTs are the units of computation in OCR. All EDTs
need to declare a set of dependencies to which DBs or events
can be associated. An EDT does not begin execution until

all its dependencies have been satisfied. EDTs are intended
to be non-blocking pieces of code and they are expected to
communicate with other EDTs through the DBs (which are
the units of storage) and events. All user data needs to be
in the form of DBs and to be controlled by the runtime since
the runtime can relocate and replicate DBs for performance,
power, or resilience reasons.

Events provide a mechanism for creating data and control
dependencies in OCR. An event can be associated with a DB
or empty. An event with a DB can be used to pass data to
the EDTs waiting on the event (control+data dependence)
and an event without a DB can be used to trigger EDTs
waiting on the event (control dependence). Pure data de-
pendence is encoded by attaching a DB in a dependence slot
to an EDT.

The programmer (or compiler) creates an OCR program
by constructing a dynamic graph of EDTs, DBs and events.

3. TECHNICAL APPROACH
We implement a backend to the R-Stream compiler that

takes stylized C loop codes and generates parallel and locality-
optimized OCR versions of the code. The approach involves
polyhedral compiler optimizations to transform the code for
exploiting data locality and exposing concurrency that is
suited for asynchronous EDT-based execution in a (deeply)
hierarchical architecture, and to identify and generate min-
imal communications in the code between different levels of
memory. R-Stream creates “tiles” of computations and data
that are then turned in to EDTs and data blocks, respec-
tively (i.e. each computation tile is turned in to an EDT
and each data tile is turned in to a data block). These
tiles are created after applying optimal polyhedral transfor-
mations. R-Stream also captures the dependence between
tiles in a concise internal representation, namely, depen-
dence polyhedra. This tile dependence information is em-
bedded in the generated code that dynamically creates the
task-dependence graph needed by the runtime and sets the
dependence between different EDTs (and data blocks) dur-
ing execution. In further discussion, we use the terms “task”
and “EDT” interchangeably.

3.1 Scalable spawning of tasks
R-Stream supports automatic generation of OCR code

with on-the-fly scalable creation of EDTs. Creating all the
EDTs at the beginning of the execution leads to non-scalability
and adds a huge sequential “startup” overhead. R-Stream
statically identifies (whenever possible) the set of EDTs that
do not depend on any other EDT (i.e. that do not have
a “predecessor” EDT) and generates code to populate and
spawn them at the beginning. Each EDT is generated with
an additional piece of code that embeds the necessary de-
pendence information to create its successors (if they are
not created already) and spawn them dynamically. This
dynamic on-the-fly creation of EDTs is key for scalable ex-
ecution of OCR code on large number of cores.

We briefly describe the technique in R-Stream to avoid the
sequential startup overhead in task spawning. The overhead
arises primarily due to the absence of a viable way to stat-
ically determine a unique predecessor task for a successor
task that has multiple predecessors. We implement a tech-
nique called “autodecs” that dynamically resolves this prob-
lem. We represent the number of unsatisfied input (control)
dependences of a task using a “counted dependence” and we

use polyhedral counting techniques to scan or enumerate the
task dependence polyhedra to create the count. We let each
predecessor of a task to decrement the count upon comple-
tion. The main idea of autodecs is that the first predecessor
task to be able to decrement the counter of a successor task
becomes the creator of the successor task. Unique creation
of a counted dependence and hence a unique successor task
creation is ensured through an atomic operation that avoids
the race condition when two or more predecessors complete
at the exact same time and become ready to create the same
task.

3.2 Scalable creation and management of data
blocks

R-Stream has the capability to generate local arrays for
holding data within a computation tile or task and to gen-
erate explicit communication or data movement needed to
transfer data between remote and local arrays. These fea-
tures are exploited to generate data blocks for OCR code
generation. The prior support for OCR code generation in
R-Stream involves creating one large data block for each ar-
ray, then create smaller data blocks within EDTs that fit in
the local memory based on the data accessed within an EDT,
and generate communications between the data blocks.

We extend and improve R-Stream’s data block genera-
tion capability to provide scalable OCR data blocks sup-
port. The extended capability takes in a data partitioning
(aka data tiling) specification from the user and creates data
blocks (data tiles) according to the specification. R-Stream
automatically identifies the data blocks that each EDT needs
and creates an input slot for each data block. Within an
EDT, the data needed by the EDT from each of its input
data blocks is automatically copied on to temporary local
arrays that collectively fit in the local memory (scratchpad
or cache) attached to the processing element. This capa-
bility eliminates the need to create one large data block for
each array and provides a pathway to achieve scalable per-
formance.

3.3 R-Stream runtime layer
As mentioned above, R-Stream automatically identifies

the dependence between different EDTs and the dependence
between EDTs and data blocks, and automatically generates
code for optimal on-the-fly EDT and data block creation.
R-Stream has a light-weight runtime layer that operates on
top of OCR and assists these capabilities, namely, on-the-fly
creation of EDTs and data blocks, and dynamic spawning
of EDTs. The runtime layer keeps track of active EDTs
and data blocks, and implements (non-OCR-based) race-
avoidance mechanisms to enable dynamic race-free creation
of EDTs and data blocks. Currently these mechanisms are
implemented to run on a shared memory system for proof-
of-concept validations. In future, the runtime layer will be
using one of the latest OCR features, namely, “GUID la-
beling”, to implement the race-avoidance mechanisms. The
R-Stream OCR backend will support GUID labeling once
the APIs for GUID labeling are stabilized in the next public
OCR release.

The R-Stream OCR backend has to be constantly kept in
synchronization with the OCR release. This requires con-
stant changes to the backend as the OCR APIs evolve. Once
the R-Stream OCR backend supports GUID labeling we can
also run optimized distributed OCR versions. Otherwise, we

would have to resort to running non-optimized OCR codes
on distributed memory nodes.

4. EXPERIMENTAL RESULTS
We present the results that we produced with R-Stream’s

automatic optimized OCR code generation capability in this
section. These results clearly highlight the performance and
productivity benefits that R-Stream compiler offers to an
exascale software stack. We used R-Stream v3.15.0.1 for
our experiments. We ran our experiments on a 48 core (96
thread) quad socket Intel Xeon (Ivy Bridge) server. We
generate OCR code through R-Stream for a wide variety
of kernels and benchmarks spanning multiple domains and
application areas - linear algebra, multi-linear algebra (ten-
sor computations), space-time adaptive processing (STAP),
Synthetic Aperture Radar (SAR), and so on. In this pa-
per, we discuss our code generation and optimization exper-
iments on a benchmark (HPGMG) and a proxy application
(CoSP2) that are relevant to the exascale community.

4.1 HPGMG: Chebyshev kernel
The HPGMG benchmark [1] consists of two different code

bases - a finite volume code and a finite element code. We
examined the timing of HPGMG benchmark and identified
that the performance critical sections include smoothing, re-
striction, interpolation, and ghost zone exchange operations.

For our experiments, we focused on optimizing coarser
regions of the HPGMG “Chebyshev” smoother kernel to
exploit the opportunities in executing these regions in a
more asynchronous fashion in an EDT-based runtime such
as OCR. We isolated a coarse grain Chebyshev kernel rep-
resenting the entire smooth function and parallelized with
multiple methods, namely, hand parallelized OpenMP, R-
Stream-generated OpenMP (with and without fusion of dif-
ferent sweeps of smoother), and R-Stream-generated OCR
(with and without fusion of different sweeps of smoother), as
shown in Figure 1. R-Stream-generated OCR code enables a
scalable asynchronous EDT-based execution. As mentioned
earlier, R-Stream has a lightweight runtime layer on top of
OCR that enables on-the-fly just-in-time creation of EDTs
and data blocks, and enables dynamic creation and handling
of dependence events between EDTs. This avoids any unnec-
essary runtime overhead and enables scalable performance.
This turned out be key for the Chebyshev kernel.

Further, R-Stream applies key compiler optimizations and
generates OCR and OpenMP codes. For the Chebyshev ker-
nel, the optimizations included - (1) smart fusion of Cheby-
shev smoother loops, (2) tiling across multiple smooth steps,
and (3) autotuned tile dimensions. Due to the afore-mentioned
compiler and runtime optimizations, R-Stream OCR code
turned out to be the fastest among all parallelized codes
when the number of threads is greater than 2. R-Stream
OpenMP version turned out to be the fastest for the single
thread and two thread runs, primarily due to the compiler
optimizations. R-Stream OCR code was slower than the
OpenMP versions for the single thread and two thread runs.
For the other cases (number of threads > 2), R-Stream OCR
code was up to 5x faster than hand parallelized OpenMP
code, and further, R-Stream OCR code was also faster than
fused, tiled and autotuned R-Stream OpenMP code.

Our experiments also showed super-linear speedups when
scaling R-Stream OCR versions of the Chebyshev smoother
from 1 to 32 OCR workers, as shown in Figure 2. We gener-

0

0.1

0.2

0.3

0.4

0.5

0.6

1t 2t 4t 8t 16t 32t

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Number of Threads

Manual OpenMP R-Stream OpenMP (fusion)

R-Stream OpenMP (fission) R-Stream OCR (fusion)

R-Stream OCR (fission)

Figure 1: Chebyshev smoother performance on 643 ar-

ray using multiple parallelization techniques for 1 to 32

threads. R-Stream OCR shows up to 5x performance

increase vs hand parallelized OpenMP.

0

5

10

15

20

25

30

35

40

1t 2t 4t 8t 16t 32t

Sp
e

e
d

u
p

Number of Threads

R-Stream OCR (fusion) R-Stream OCR (fission)

Figure 2: R-Stream OCR scalability: R-Stream OCR

shows over 33x performance increase at 32 worker

threads; the super-linear speedup is due to the fact the

code is tuned for each worker count with a tile size that

leads to better cache utilization and performance for that

worker count.

ated tiled code and autotuned the tile sizes for each worker
count. Super-linear speedup was observed at 4, 8, 16, and 32
workers. This is due to better cache utilization of the tiled
code tuned for each worker count. The number of EDTs
and the number of floating point operations per EDT de-
pend on the tile size. The number of floating point opera-
tions per EDT in codes that gave high performance was typ-
ically between 128 K and 256 K. In total, using R-Stream we
generated approximately 8.75 million lines of OCR Cheby-
shev smoother code consisting of approximately 3500 vari-
ants with 2500 lines of code each. The Chebyshev smoother
code inputted to R-Stream has less than 100 lines of code.

0

0.1

0.2

0.3

0.4

0.5

0.6

1t 2t 4t 8t 16t 32t

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Number of Threads

Manual OpenMP R-Stream OpenMP R-Stream OCR

Figure 3: Performance of manual OpenMP version

and R-Stream generated OpenMP and OCR versions of

spmm code. R-Stream OCR version shows comparable

performance with respect to the OpenMP versions.

4.2 CoSP2: sparse matrix matrix multiply ker-
nel

We experimented with R-Stream’s OCR code generation
and optimization capabilities on the sparse matrix matrix
multiply (spmm) kernel of the CoSP2 proxy application [3]
from ExMatEx co-design center. The spmm kernel has in-
direct array accesses that make the computations irregular
and thereby pose additional challenges to the compiler.

R-Stream successfully exploited the available concurrency
in spmm code and generated a locality-optimized parallel
OCR code. We ran the different versions of spmm code using
a large sparse matrix of size 12288 x 12288 that has 196608
non-zeros. The performance results of manually parallelized
OpenMP version, R-Stream generated OpenMP version and
R-Stream generated OCR version are shown in Figure 3.
The R-Stream OCR version exhibits comparable performance
with respect to the OpenMP versions. The R-Stream OpenMP
version is slightly better in most of the cases. This kernel
has an outermost “doall” (synchronization-free parallel) loop
that leaves the asynchronous runtime with no specific advan-
tage to exploit. The proportion of runtime overhead in the
overall execution time of this kernel is a possible reason for
OCR version’s slightly lower performance.

5. CONCLUSION AND FUTURE WORK
We have developed capabilities within R-Stream paral-

lelizing compiler for automatic generation and optimization
of code targeted towards OCR, an exascale-ready asynchronous
task-based runtime. Through these capabilities we have
demonstrated the following: (1) automatic code generation
and data management enables high productivity, (2) the
ability to find more concurrency and data locality, and gen-
erate different versions of locality-optimized parallel code
improves performance (and energy efficiency), and (3) the
ability to parallelize to an asynchronous EDT model in a
scalable manner provides the basis for seamlessly scaling to
adaptive exascale architectures.

6. REFERENCES
[1] M. F. Adams, J. Brown, J. Shalf, B. V. Straalen,

E. Strohmaier, and S. Williams. HPGMG 1.0: A
Benchmark for Ranking High Performance Computing
Systems. LBNL Technical Report, 2014, LBNL 6630E.

[2] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An
efficient multithreaded runtime system. Journal of
Parallel and Distributed Computing, 37(1):55–69,
August 25 1996. (An early version appeared in the
Proceedings of the Fifth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(PPoPP ’95), pages 207–216, Santa Barbara,
California, July 1995.).

[3] ExMatEx. CoSP2 Proxy Application.
http://www.exmatex.org/cosp2.html.

[4] Intel. Concurrent collections.
http://software.intel.com/en-us/articles/intel-
concurrent-collections-for-cc/.

[5] Intel Open Source Technology Center. Open
Community Runtime.
https://01.org/projects/open-community-runtime.

[6] E. International. SWift adaptive runtime machine.

http://www.etinternational.com/index.php/products/swarmbeta/.

[7] L. V. Kale and S. Krishnan. Charm++: A portable
concurrent object oriented system based on c++. In
Proceedings of the Eighth Annual Conference on
Object-oriented Programming Systems, Languages, and
Applications, OOPSLA ’93, pages 91–108, New York,
NY, USA, 1993. ACM.

[8] M. S. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance and optimizations of blocked algorithms.
In ASPLOS-IV Proceedings - Forth International
Conference on Architectural Support for Programming
Languages and Operating Systems, Santa Clara,
California, USA, April 8-11, 1991., pages 63–74, 1991.

[9] S. Treichler, M. Bauer, and A. Aiken. Realm: An
event-based low-level runtime for distributed memory
architectures. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation,
PACT ’14, pages 263–276, New York, NY, USA, 2014.
ACM.

[10] N. Vasilache, M. M. Baskaran, T. Henretty,
B. Meister, H. Langston, S. Tavarageri, and R. Lethin.
A tale of three runtimes. CoRR, abs/1409.1914, 2014.

