
Implementing a High-level Tuning Language
on the Open Community Runtime

[Experience Report]

Nick Vrvilo
Rice University

Houston, Texas, USA
nick.vrvilo@rice.edu

Romain Cledat
Intel

Hillsboro, Oregon, USA
romain.e.cledat@intel.com

ABSTRACT
The Open Community Runtime (OCR) is designed as a
testbed for future exascale software technologies and tech-
niques. The runtime is architected for modularity and exten-
sibility, allowing researchers to create new components for
testing new runtime strategies. One aspect of this design
choice is reflected in the OCR hints API, which allows ap-
plication code to communicate extra tuning information to
the runtime. This extra information is optionally analyzed
by runtime components and heuristics.

In this paper, we present our experience with building a
high-level tuning abstraction on top of OCR, as well as with
modifying OCR to add a small set of tuning hints. We de-
scribe the process of generating hint-annotated OCR code
from a higher-level CnC application using the CnC-OCR
framework. We also describe the process of modifying the
runtime to support new hints, and new components to act
on the tuning hints during program execution. Finally, we
show preliminary results from our proof-of-concept imple-
mentation.

1. INTRODUCTION
The Open Community Runtime (OCR)1 is an open source

software project with the purpose of building a task-based
runtime for future exascale systems. A major consideration
in the runtime design was its modularity and extensibility,
since the project aims to allow the community to contribute
to the project by creating new components and testing new
functionalities.

A hints API was added in the April 2015 workshop re-
lease of OCR, which allows an application programmer to
annotate OCR objects (e.g., datablocks and EDTs) with ad-
ditional information that might be useful for runtime heuris-
tics. Shortly after the April workshop release, we began
a project to add support to OCR for a small set of hints,

1 https://xstackwiki.modelado.org/OCR

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RESPA ’15 Austin, Texas USA
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

which would be used by a high-level language on top of OCR;
namely, CnC-OCR.2

This paper describes our experience with modifying the
runtime to support new hints, and with generating the hint-
annotated OCR code for CnC-OCR applications. Section 2
provides a brief overview of our tuning language for CnC,
and the tuning hints we implemented for CnC-OCR appli-
cation support. Section 3 outlines the process of generating
OCR code, including hint API annotations, from our higher-
level language. Section 4 discusses the changes we made to
OCR to support the set of hints introduced in section 2.
Section 5 provides some preliminary results from applying
the hints to a few kernel applications. Section 6 explains the
limitations we encountered when attempting to express ad-
ditional hints in OCR. Section 7 summarizes the conclusions
we drew from this overall experience.

2. HIGH-LEVEL TUNING LANGUAGE
CnC is a graph-based dependence programming model.

The application is described as a graph of tasks and data,
with dependence edges implicitly restricting the parallelism
among the task nodes. In CnC-OCR, the application pro-
grammer writes a textual graph specification that describes
the static dependence relationships among the dynamic task
and data instances in the application. Each dynamic task
and data instance in CnC-OCR is identified by a unique inte-
ger tuple value called a tag. Tunings are just ways of express-
ing additional constraints on the graph, and are declared in
a separate tuning specification file. The graph and tuning
specification files are used to generate a skeleton project, in-
cluding scaffolding code to interface the programmer’s task
code with OCR. Tuning specification declarations are auto-
matically translated into corresponding OCR hint API code
within the scaffolding layer.

We implemented support for two classes of tuning hints
in CnC-OCR: affinity hints, and task scheduling hints. The
affinity tunings include explicit distribution functions, and
a more high-level task-data affinity declaration. The distri-
bution functions allow mapping instances of data and tasks
(via their tag values) onto the set of available compute loca-
tions (via an internal OCR abstraction that currently corre-
sponds to an MPI rank). The task-data affinity allows the
programmer to constrain a task to be colocated with one of
its dependences (input data instances).

We also implemented two task scheduling tuning hints:
task priorities (which should be self-explanatory), and la-

2 https://habanero.rice.edu/cnc-ocr

1

https://xstackwiki.modelado.org/OCR
https://habanero.rice.edu/cnc-ocr

beling of stoker/quencher tasks. Stokers are tasks that cre-
ate more work (more tasks), whereas quencher tasks should
mainly just do work. Any task not labeled as a stoker is
assumed to be a quencher. By labeling stoker tasks as such,
the runtime can throttle task creation when it already has
plenty of work to do (by only scheduling quencher tasks). If
the runtime is using a work-stealing scheduler, then thieves
can give preference to stoker tasks when stealing, which
should create more local work when run and thus delay the
need to attempt more steals.

3. OCR CODE GENERATION
The CnC-OCR toolchain automatically generates OCR

scaffolding code based on the dependences declared in the
CnC graph specification, and the additional declarations in
the tuning specification. For example, an EDT is generated
to wrap each CnC computation task, and the generated code
automatically sets up the EDT’s dependences based on the
declarations in the CnC graph specification. Since there is
a 1:1 mapping between most of the basic concepts in CnC
and OCR, making the process of generating scaffolding code
between a CnC application and OCR pretty straightforward.
Similarly, declarations in the CnC tuning specification are
used to automatically generate hint-annotated OCR code.

Note that whereas OCR hints are specified inline through-
out the application code, the CnC-OCR tunings are specified
in a completely separate file. We believe this provides a bet-
ter separation of concerns during the development process,
and also makes it easier to get a big-picture view of an ap-
plication’s tunings (since all the tunings are in one place).
We believe this is an important advantage available through
higher-level abstractions built on top of OCR.

The CnC affinity tunings are implemented using OCR’s
affinity API extension. An affinity for an EDT or a dat-
ablock can be set directly via the affinity parameter when
creating the EDT or datablock. This is equivalent to, but
more succinct than, setting the AFFINITY hint on the EDT
or datablock through the hints API; therefore, we bypass the
hints API when generating affinity hint code. Since the tun-
ings map directly to the affinities provided by the affinity
API, these tunings are supported directly by the existing
API (i.e., they do not require any runtime modifications).

Since the OCR hints API already includes a priority hint
for EDTs, we use that hint to store our corresponding tuning
hint value. However, the hint was only included in the API
as an example of the types of information that can be passed
through hints to the runtime, and the priority hints are sim-
ply ignored by the default scheduler. Setting an EDT’s pri-
ority value requires four separate function calls to the hints
API (in addition to the normal calls to ocrEdtCreate and
ocrAddDependence).

The stoker tuning hint generation is very similar to the
priority tuning; however, there is no existing hint corre-
sponding to stoker tasks in the OCR hints API, so we had
to add our own. The hint code is generated along with
the EDT-creation code for a given CnC task, attaching the
STOKER hint to a particular EDT instance if it is labeled
as a stoker in the CnC tuning specification. Although this
adds some verbosity to OCR code when hints are used, this
is not a significant factor for our generated scaffolding code,
since it is separate from the CnC-OCR application code and
the application programmer can express the hints more suc-
cinctly in the CnC tuning specification.

Our experience with OCR code generation for tuned CnC-
OCR applications should generalize to any higher-level pro-
gramming abstraction on top of OCR, whether compiler-
supported or library-based. This is because any abstraction
built on top of OCR will use the same API, and thus will
need roughly the same code to communicate tuning hints to
the underlying runtime.

4. RUNTIME SUPPORT FOR HINTS
In order for our generated code to compile, we had to

modify the OCR hint definitions to include our new hints.
We also needed to add features to the OCR scheduler to
observe and react to hints set in our generated code, and
finally, we needed to change the runtime configuration to
use the new features that we added to the scheduler.

4.1 Adding Hint Types
The hints API is very well documented, even explaining

the exact steps to follow to add a new hint type.3 Adding
the STOKER hint type required changing just four lines of
code across four different runtime source files.

4.2 Modifying the Scheduler
In addition to the hints API, the April 2015 workshop

release of OCR also included a new and improved sched-
uler framework. The new scheduler is more modular, and
the API is designed for better support of complex sched-
uler heuristics. We used this new scheduler to add runtime
support for our two schedule-related hints.

The core scheduler behavior is handled by scheduler ob-
jects and heuristics (other types of components exist as well,
but we only needed these two). Scheduler objects are mostly
passive data structures, whereas the heuristics encapsulate
the decision-making logic. Although a high-level document
exists on the wiki, giving a sketch of the overall scheduler de-
sign, not much exists in the way of documenting the design of
the individual scheduler components.4 Fortunately, the de-
fault work-stealing scheduler provides a decent template for
building a custom scheduler. Our strategy for implementing
new scheduler functionalities was simply to copy the exist-
ing scheduler components and then modify the copied code
just enough to get our desired behavior.

4.2.1 Stoker/Quencher Scheduler
The stoker/quencher hint requires partitioning tasks into

these two groups, giving preference to quencher tasks over
stoker tasks when doing local work, and giving the opposite
preference for work stealing. We implemented this behavior
by coping the existing work-stealing scheduler heuristic, and
simply doubling the number of deque scheduler objects in
the deqs array, where the deques at indices 2i and 2i + 1
are the quencher and stoker deques (respectively) for the
ith worker. We then modified the EDT ready action to
examine the STOKER hint, and place new tasks into the
proper deque accordingly. Finally, we modified the get work
action to query the preferred deque first when looking for
work locally or trying to steal work globally.

3 https://xstack.exascale-tech.com/wiki/index.php/
OCR_Module_Hints

4 https://xstack.exascale-tech.com/wiki/index.php/
OCR_Module_Scheduler

2

https://xstack.exascale-tech.com/wiki/index.php/OCR_Module_Hints
https://xstack.exascale-tech.com/wiki/index.php/OCR_Module_Hints
https://xstack.exascale-tech.com/wiki/index.php/OCR_Module_Scheduler
https://xstack.exascale-tech.com/wiki/index.php/OCR_Module_Scheduler

Since this update was implemented using existing sched-
uler objects (deques), the update was pretty straightfor-
ward and only required creating a new heuristic. The new
stocker/quencher scheduler heuristic adds about 400 lines of
code (LOC) to OCR; however, when compared against the
default work-stealing heuristic, we see that we only inserted
or modified about 50 LOC from the copy. In other words,
if the existing heuristic were patched to support this hint
(rather than creating a new heuristic), then the difference
would only be about 50 LOC.

4.2.2 Priority Scheduler
The priority hint requires that tasks are acquired by work-

ers in priority order. Supporting this hint required modify-
ing both the heuristic and the underlying scheduler object
data structures. We created a binary max-heap structure to
store our prioritized tasks, a work-sharing domain object for
centralized prioritization, and a priority scheduler heuristic.
The binary heap scheduler object reads a task’s PRIORITY
hint, which is used as the weight for heap insertion. The
work-sharing domain directs all requests for scheduling new
tasks, or for acquiring tasks for execution, to the binary heap
object. The priority heuristic similarly directs requests to
the domain object.

The priority scheduler’s heuristic is less complex than
the default work-stealing heuristic because all of the logic
is offloaded to the backing max-heap data structure. This
actually required stripping out a lot of the copied compo-
nent code in order to get the desired behavior. The pri-
ority scheduler components add about 1200 LOC to OCR,
with about 230 LOC in the binary heap implementation.
If this were applied as a patch to the default scheduler
(rather than creating a new scheduler type), then the change
would add/modify about 460 LOC. Note that these num-
bers include both the priority queuing logic as well as the
work-sharing heuristic logic, whereas the previous example
only contained partitioning logic, and thus required a much
smaller change to the original code.

4.2.3 OCR Configuration
Interestingly, the most difficult part of the runtime modi-

fication process was generating an OCR configuration file to
load our new scheduler components. In order to avoid the
need to rebuild the runtime library every time you want to
swap out a runtime component, OCR dynamically chooses
its components during startup based on a configuration file.
This is an implementation choice, and is not part of the
standard. The configuration file structure is not well docu-
mented, and neither is the usage of the file in OCR’s boot-
strap process.

Initially, OCR seemed to stubbornly ignore the new con-
figuration and continue to use the original settings—but
we eventually deduced that the scheduler components de-
clared in the configuration file were being loaded position-
ally (based on their declaration order in a header file) rather
than using the component name from the configuration to
look up the corresponding scheduler object. After reporting
this strange behavior, the configuration file parser was even-
tually patched to be less rigid in the ordering requirements
for scheduler component types. However, since the configu-
ration process is not thoroughly documented, it is not clear
if the patch was actually a bug fix or just an “improvement.”

5. EXPERIMENTS AND RESULTS
We verified that our generated code and runtime mod-

ifications resulted in the expected behavior by tuning one
small benchmark corresponding to each of our hints.

Figure 1: Smith-waterman distributed scaling re-
sults. Each input sequence contains about 200k nu-
cleotides, and each tile comprises about 175×150 en-
tries of the dynamic programming matrix.

To test distribution and affinity, we tuned the Smith-
Waterman sequence alignment kernel. We ran the appli-
cation with the default generated affinities—which corre-
sponds to a column distribution in this case—and a row-
block distribution, with 16 rows per block. The results are
shown in figure 1. The default distribution showed negative
scaling due to excessive communication overheads, whereas
the tuned version showed positive (but still sub-linear) scal-
ing. This is a significant improvement, especially consider-
ing that changing to a row-block distribution only required
three short lines of code in a standalone tuning specification.
When we ran the same application (with the same row-block
tuning) on the Intel CnC (iCnC) runtime, we observed a sim-
ilar scaling trend, suggesting that the suboptimal scaling is
not an OCR-specific problem for this application and tuning
configuration.

To test the priority scheduler, we used the N-queens ker-
nel, which searches for a given number of solutions to plac-
ing N queens on an N ×N chess board such that no queen
threatens any other queen. The queens are placed row by
row, and the search only continues to the next row if the
current row’s placement is legal. By prioritizing search tasks
that are deeper in the search tree (i.e., attempting to place a
queen on a higher-numbered row), we increase the likelihood
of completing the search sooner. In contrast, if the shallow
search tasks are prioritized (i.e., attempting to place a queen
on a lower-numbered row), then we force the application to
search almost the entire problem space before finding any
solutions, which noticeably degrades the performance. Fig-
ure 2 shows the results. Again, each of these tunings is ob-
tained by adding just one short line of code in a standalone
tuning specification.

We built a custom “task-bomb” kernel to test the stoker

3

Figure 2: Performance results for N-queens kernel,
searching for 5k solutions on a 13×13 board. Deque
refers to the default (non-priority) scheduler. Depth
refers to the case when priority = row. Breadth refers
to the case when priority = −row.

hint. This application creates 32 stoker tasks initially, each
of which create 100 quencher tasks (which just busy loop),
plus one more stoker task. This repeats for each of the initial
stoker tasks 200 times. The results for this kernel are shown
in figure 3. In the default deque-based scheduler, all of the
stoker tasks execute before any quencher tasks (due to the
LIFO behavior of the deques), which causes the scheduler
to quickly exceed its maximum resource limits due to all of
the live quencher tasks. If the stoker tasks are marked as
such using our tuning—again, one line of tuning-spec code—
then our modified scheduler can prefer running the quencher
tasks, which allows the kernel to complete without running
out of resources. Note that similar performance is achieved
on this benchmark using our priority scheduler by setting
the quencher tasks priorities higher relative to the stoker
tasks. In a benchmark where work-stealing played a bigger
role, we might see a bigger performance difference due to
the special treatment of stoker tasks when stealing.

6. HINT LIMITATIONS
At the beginning of this project, we planned for another

tuning hint related to data. The hint would allow a task
to specify that it would only access some subrange of bytes
from an input, and the runtime could optimize accordingly.
However, we soon found that there was not a clean way to
express this hint within the bounds of the current hints API.
As a result, we have not yet implemented this hint.

The main issue with this hint is that it would be most nat-
urally associated with an EDT slot in OCR, but the hints
API does not allow hints to be attached to slots. An alterna-
tive solution would be to store the slot number along with
the hint value, but then we would be limited to declaring
this hint for only one input per EDT. This points to an-
other limitation of the hints API: only a single scalar value
can be associated with a given hint. For example, if we want
to specify multiple options for the affinity of a task, that is
not possible with the current hints API.

We considered that an acceptable workaround might be

Figure 3: Performance results for the task-bomb
kernel. Scheduler configurations include the default
default deque scheduler, the priority-weight sched-
uler, and the stoker-quencher deque scheduler. The
deque-based scheduler segfaulted on every run due
to too many live tasks.

to statically declare multiple explicit copies of the hint to
accommodate a bounded number of values for the same hint
(e.g., AFFINITY1, AFFINITY2, ...). However, the runtime
would need to check each of those separate hints individually
when making EDT scheduling decisions, which might add an
unacceptable overhead.

7. CONCLUSIONS
We were able to implement a high-level tuning language

for CnC-OCR by generating code using the OCR hints API.
Although the current hints API has limitations, it was ex-
pressive enough to implement a variety of interesting tuning
options that demonstrated the ability to obviously influence
the performance of the selected benchmarks. Using a high-
level tuning language on top of OCR also provided a cleaner
separation of concerns for application development than di-
rectly writing the inline OCR hints.

Much of the existing runtime code (especially the newer
code) is well-designed and provides a good template for cre-
ating new runtime components; however, some of the older
pieces of the runtime are not well documented, making them
difficult to understand and work with. Although more com-
plete documentation would have been helpful, overall we
found it relatively easy to implementing new OCR sched-
uler components to support useful tunings for CnC-OCR.
We believe that these findings, although currently limited to
CnC on OCR, will also transfer to other abstractions built
on top of the Open Community Runtime.

Acknowledgments
We would like to thank the OCR team at Intel for their guidance
and support, especially Sanjay Chatterjee for his work on the hints
API and CnC tuning. We would also like to thank Vivek Sarkar, Kath
Knobe and Zoran Budimlić from the Habanero research group at Rice
University for their feedback, as well as their contributions to other
research on CnC programming model.

4

	Introduction
	High-level Tuning Language
	OCR Code Generation
	Runtime Support for Hints
	Adding Hint Types
	Modifying the Scheduler
	Stoker/Quencher Scheduler
	Priority Scheduler
	OCR Configuration

	Experiments and Results
	Hint Limitations
	Conclusions

