
Efficient Static and Dynamic Memory Management
Techniques for Multi-GPU Systems

Max Grossman
Dept. of Computer Science - MS 132

Rice University, P.O. Box 1892
Houston, TX 77251, USA

jmg3@rice.edu

Mauricio Araya-Polo
Repsol USA (now at Shell Intl. E&P Inc.)

2455 Technology Forest Blvd
The Woodlands, TX 77381

ABSTRACT
There are four trends in modern high-performance com-
puting (HPC) that have led to an increased need for ef-
ficient memory management techniques for heterogeneous
systems (such as one fitted with GPUs). First, the aver-
age size of datasets for HPC applications is rapidly increas-
ing. Read-only input matrices that used to be on the or-
der of megabytes or low-order gigabytes are growing into
the double-digit gigabyte range and beyond. Second, HPC
applications are continually required to be more and more
accurate. This trend leads to larger working set sizes in
memory as the resolution of stored and computed data be-
comes more fine. Third, no matter how close accelerators
are to the CPU, memory address spaces are still incoherent
and automated memory management systems are not yet
reaching the performance of hand-crafted solutions for HPC
applications. Fourth, while the physical memory size of ac-
celerators is growing it fails to grow at the same rate as the
working set sizes of applications.

Taking these four trends together leads to the conclu-
sion that future supercomputers will rely heavily on efficient
memory management for accelerators to be able to handle
future working set sizes, but that new techniques in this field
are required.

In this paper we describe, evaluate, and discuss memory
management techniques for two common classes of scientific
computing applications. The first class is the simpler of the
two and assumes that the locations of all memory accesses
are known prior to a GPU kernel launch. The second class
is characterized by an access pattern that is not predictable
before performing the actual computation.

We focus on supporting data sets which do not fit in the
physical memory of current GPUs and which are used in ap-
plications exhibiting both of these access patterns. Our ap-
proach considers GPU global memory as a cache for a large
data set stored in system memory. We evaluate the tech-
niques described in this paper on a production (industrial-
strength) geophysics application as part of a larger GPU

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

implementation. Our results demonstrate that these tech-
niques flexibly support out-of-core datasets while minimiz-
ing overhead, future-proofing the target application against
future generations of GPUs and dataset size increases. Our
results demonstrate that using these out-of-core memory
management techniques results in 80-100% GPU memory
utilization while adding 7-13% of overhead. These over-
heads are offset by the performance improvement from us-
ing GPUs and using the memory management techniques
described in this paper improves the flexibility of the overall
application.

1. INTRODUCTION
GPUs offer a highly parallel and energy efficient alterna-

tive to conventional, commodity processors for high-performance
computing platforms. The last decade of research and devel-
opment into GPU numerical computing has proven that fea-
tures such as many compute units, high memory bandwidth,
specialized memory hierarchy, and low power consumption
of GPUs make them a fruitful porting target for scientific
applications [5].

However, the majority of that research has been focused
on GPU-friendly kernels and datasets where one of the fol-
lowing is true:

1. The working set size of the kernel naturally fits into
GPU memory without any extra programmer effort.

2. The working set size and access patterns of the kernel
make a straightforward double-buffering approach to
memory management feasible.

In this work, we present novel contributions to GPU mem-
ory management techniques developed as part of a GPU
implementation of a production geophysics application. We
evaluate our techniques on real-world geophysical datasets,
where neither of the above two characteristics are present.
Our contributions include:

1. An approach to managing out-of-core datasets on GPUs
for kernels where the memory regions accessed can be
computed efficiently prior to a kernel launch. Stati-
cally computing memory region accesses simplifies the
problem of out-of-core dataset management by allow-
ing the host application to assert that all necessary
data is on the GPU before launching a kernel.

2. An approach to managing out-of-core datasets on GPUs
for kernels where the memory regions accessed can-
not be efficiently computed prior to a kernel launch.

This characteristic complicates the data dependencies
of each kernel launch, but it is inherent to many classes
of algorithm.

The paper is organized as follows: Section 2 will summa-
rize related work in this area and describe how our work
differs. Section 3 will briefly describe the legacy computa-
tional kernels we target in this work and relevant aspects
of the encompassing application architecture. Section 4 will
describe the memory management techniques used during a
GPU port of these legacy computational kernels. Section 5
will evaluate the overheads added by these techniques and
demonstrate that these overheads do not offset the perfor-
mance gains made by using GPUs. Section 6 will discuss
how the techniques presented in Section 4 are generally ap-
plicable and the factors that motivated their design. Sec-
tion 7 will conclude with a summary of our contributions
and results.

2. RELATED WORK
[3] offers the first example of a fully automatic system for

managing host and GPU communication. In [3], a compile-
time pass is used to transform application code so that stack,
heap, and global allocations made by the program can be
tracked by a runtime library. Then, the runtime inspects
items passed to the kernel and identifies reachable entities
that must be transferred to the GPU. However, because this
work performs this analysis at the granularity of “alloca-
tion units”, it does not automatically support out-of-core
datasets.

The most common and effective approach to out-of-core
datasets is to use tiling of the input space and process each
tile separately on the GPU. [7] and [4] are both examples of
this technique. However, this approach assumes a number
of characteristics about the problem. First, that the input
space is the part of the problem that is out-of-core and that
tiling across it is a valid transformation. While this is true
for many problems (e.g. MapReduce computation as in [7]
and stencils as in [4]) it is not true for the application de-
scribed later in Section 3. Second, this approach assumes
that the read-set for a unit of parallel execution is straight-
forward and efficient to compute. Again, Section 3 will de-
scribe an important scientific application where this is not
the case.

The work in [2] used an on-demand approach to data com-
munication for out-of-core datasets in a heterogeneous plat-
form that is similar to our second out-of-core memory man-
agement approach described in Section 4.0.3. However, the
work in [2] does not consider deduplication of shared data
on the GPU, multiple host threads sharing the GPU, and
differs entirely from our first out-of-core approach, described
in Section 4.0.2.

NVIDIA’s Unified Memory [1] eliminates the need for
GPU programmers to explicitly manage transfers between
host and device, using memory faults on each to automat-
ically perform communication on demand. While Unified
Memory significantly reduces programmer burden and is a
general tool for automatic memory management, it 1) relies
on proprietary technology, 2) in our preliminary evaluations
introduced too much overhead, and 3) does not support ker-
nel working sets larger than device memory.

In general, past research in GPU memory management
has either 1) avoided supporting out-of-core datasets en-

tirely, or 2) focused on applications where the tiling of large
datasets is straightforward, making the conversion of an out-
of-core dataset to an in-memory dataset straightforward. In
the next section, we will briefly describe a relevant geophys-
ical application (heavily used in Oil and Gas exploration)
for which these constraints are null to motivate the memory
management techniques presented later in Section 4.

3. TARGET APPLICATION AND PROBLEM
DESCRIPTION

Kirchhoff Migration (KM)[8] is a widely used subsurface
reconstruction technique in hydrocarbon exploration [6]. KM
is a two-step algorithm. First, a large three-dimensional
matrix of traveltimes to points in the subsurface is cal-
culated using wavefront (ray-based approximation) propa-
gation. This stage is called traveltime computation (TT).
Then, using seismic traces recorded at different source lo-
cations on the surface the actual subsurface structure can
be reconstructed based on the traveltimes calculated. This
stage is referred as migration (MIG).

In this work, we present memory management techniques
used during the port of a legacy, production implementation
of KM to GPUs. While the legacy implementation is dis-
tributed and multi-threaded, we only focus on the relevant
characteristics of the main individual kernels. This section
focuses on the memory access characteristics of each KM
stage (TT and MIG) to motivate the techniques presented
in Section 4.

3.1 TT Memory Accesses
The pseudocode for a single TT task is shown in 1. Pri-

marily it consists of a time loop enclosing a pipeline of data-
parallel kernels executed across a wavefront of points being
propagated. Within this pipeline, several of those kernels
read from a single large (GBytes) three-dimensional matrix.
This single matrix is generally too large to fit into GPU
memory. To complicate matters, the accesses performed by
each kernel on this matrix are data dependent, therefore
unpredictable. Calculating the memory locations referenced
requires running the full computational kernel.

Algorithm 1: Pseudo-code for the main computational
kernel of a map microjob in the travel time table com-
putation step of KM

for each time step do
for each point in wavefront do

kernel1();
end
for each point in wavefront do

kernel2();
end
...

end

3.2 MIG Memory Accesses
The MIG kernel operates on “traces”, which represent the

recorded subsurface response at receivers on the surface from
the perturbations introduced. MIG uses several hierarchies

of data partitioning to reduce disk I/O. At the highest parti-
tioning level, MIG starts by reading segments of traces from
disk. Each trace segment includes many individual traces.
Trace segments are sized to fit efficiently in the memory hi-
erarchy of the computing node.

Algorithm 2: Migration step pseudo-code listing

while traces remain in microjob do
segment = read trace segment from disk()
while traces remain in segment do

chunk = ∅
curr tables = segment.head().table deps()
while segment.head().table deps() ==
curr tables do

chunk.append(segment.pop())
end
for each trace in chunk do

for each x in trace do
for each y in trace do

for each z in trace do...
read from curr tables
...

end

end

end

end

end

end

Within each trace segment, MIG packages traces together
based on the “traveltime tables” those traces access. Each
traveltime table is a three-dimensional matrix generally on
the order of tens of MBytes but with hundreds or thousands
of them per microjob. Traces that relate to the same trav-
eltime tables are processed together to avoid reading the
same traveltime table from disk multiple times. As shown
in Algorithm 2, each trace chunk is processed using a triply-
nested, many-iteration loop that iterates over a physical
three-dimensional space (of usually billions of cells). The
innermost loop for the z-axis is not parallelizable, but the
other two are.

In MIG, the largest consumer of memory is by far the
traveltime tables. While each traveltime table is only on
the order of tens of MBytes, there are generally hundreds
to thousands referred to in a single MIG process. This far
exceeds GPU memory capacity. However, the traveltime
tables referenced from a single trace chunk are statically
determinable. This simplifies the problem of caching the
necessary data in GPU memory.

3.3 Summary
This section briefly summarized the memory access char-

acteristics of the two stages of a legacy KM application. As
part of the porting process from a multi-threaded CPU im-
plementation to a GPU implementation, it was important
to not reduce the flexibility of the application in terms of
the datasets that could be handled. The limited size of GPU
physical memory made the memory management techniques
described in the following section necessary.

4. METHODOLOGY
This section will discuss the different dynamic memory

management techniques used in TT and MIG to enable pro-
cessing of datasets whose working sets do not fit in GPU
memory. The approaches for TT and MIG share some com-
mon elements, which will be discussed first. Later, the dif-
ferences in the techniques will be explained.

4.0.1 High Level Memory Management Design
In both TT and MIG, device memory is partitioned into a

statically and a dynamically managed memory region. The
static region is allocated during microjob initialization and
stores small, global objects. After static allocation com-
pletes, the remainder of free GPU memory is considered the
dynamically managed region and is used as a cache, tem-
porarily storing data from host memory that is needed by
running kernels.

While TT and MIG share this high-level strategy, the
ways in which they manage the dynamically managed mem-
ory region differ based on the requirements of their particu-
lar kernels.

4.0.2 TT Memory Management
In TT, the dynamically managed memory region is exclu-

sively used to cache submatrices of a large three-dimensional
input matrix, called the velocity model. Given a large ve-
locity model of the dimensions Nx × Ny × Nz, the steps for
initializing the dynamically managed memory region are as
follows:

1. The velocity model is partitioned in to smaller three-
dimensional blocks that can be easily stored in device
memory. The dimensions of these blocks is decided
statically, and will be referred to as Bx × By × Bz.

2. The velocity matrix (stored as a one dimensional, row
major array) is converted to an array of blocks, where
each block is also stored as a flattened, row major,
single-dimensional array.

3. All free device memory is allocated as a single, one-
dimensional array which is logically split in to C cache
slots, where C is the amount of free memory divided
by the velocity model block size.

4. Host side data structures for managing the dynami-
cally managed memory region are created. This in-
cludes a least-recently-used queue of velocity model
blocks to help with cache eviction and an array map-
ping from block IDs to the cache slot on the device
each block is currently stored at.

With this initialization, there exists a host-side represen-
tation of the velocity model that has been partitioned into
blocks which are cache-able on the device (meaning they
are small enough that many can be fit in to device mem-
ory). Host-side data structures have also been created for
managing the GPU-side cache. There is now a large set of
on-GPU cache slots to which we can transfer these blocks,
making them accessible to GPU kernels.

One open topic remains: how does TT decide which ve-
locity model blocks to transfer to cache slots on the device?
An answer to this question is complicated by two factors.
First, it is difficult to predict which velocity model blocks

will be referenced by a kernel invocation without fully ex-
ecuting its computation. Therefore, kernels must be able
to dynamically request that blocks be brought on to the
GPU. Second, because there is only one velocity model cache
on each GPU but a single GPU may be shared by mul-
tiple threads in TT, the transfer of velocity model blocks
must be thread-safe. If a kernel is launched on the GPU
assuming that some blocks have been placed in the GPU-
side cache, that data must remain there until the kernel
completes. Those blocks cannot be prematurely evicted by
another thread.

The velocity model block cache management policy relies
on three device-side data structures:

1. superblock_requests: A device bit vector whose length
is the number of velocity model blocks created. Setting
bit i in superblock_requests from a kernel indicates
that block i is needed by a GPU kernel to complete.
A bit vector is used to minimize the number of bytes
that need to be transferred over the PCIe bus.

2. block_id_to_slot: A device array indicating if each
velocity model block is stored on the device. If block
i is stored in cache slot j on the device, element i of
block_id_to_slot contains the value j. Otherwise, an
invalid placeholder is stored.

3. points_completed: A device array indicating if the
processing of each data point completed successfully.
The processing of a point may fail if not all required
velocity model blocks are present on the device.

The steps by which a velocity model block ends up in the
GPU cache are detailed below:

1. A kernel is launched on the GPU that references the
velocity model. At each point in kernel execution where
the velocity model is referenced, the kernel marks any
referenced blocks in the superblock_requests bit vec-
tor.

2. After all required blocks are marked, the kernel then
uses block_id_to_slot to determine if each block be-
ing referenced is present on the GPU. If any required
blocks are not present the processing of the current
point in the wavefront is aborted and this point is
marked incomplete in points_completed. If all blocks
are present, the necessary values are fetched from the
GPU cache and processing continues.

3. Once the processing of a point completes successfully,
that point is marked complete in points_completed

before the kernel exits.

4. While the kernel executes, the host is blocked on it.
When it completes, the host transfers superblock_requests
back and examines it for blocks which were required
by the kernel but which were not present on the GPU.
For each block requested, the host determines the best
block to evict from the GPU. The victim block is se-
lected from a pool of blocks comprised of the least
recently referenced block for each thread using this
GPU. Iterating over these candidate blocks and select-
ing the one which was the least recently used on aver-
age across all threads on this GPU limits the disruption

that evicting this block will cause. The selected block
is evicted from the cache by removing it from host-side
data structures and updating block_id_to_slot. The
requested block is then copied to the GPU.

5. Once all requested blocks have been transferred to the
GPU, the host re-launches the same kernel. Future ex-
ecutions of the same kernel check to see if each point
was completed in an earlier attempt, preventing re-
execution of points. This process of execute, refresh,
re-execute is continued until all points are marked com-
pleted. Then, host execution continues.

We store superblock_requests in CUDA shared mem-
ory and only flush it to GPU memory as each CUDA thread
block exits. CUDA shared memory is on-chip and offers
much lower access latencies than system/global memory.
Using shared memory also decreased conflicting atomic op-
erations when updating superblock_requests.

To ensure that the concurrent GPU cache is thread-safe,
a read-write lock is used on the host. Any thread trying to
alter the contents of the cache must hold the write lock. Any
time a kernel is launched that references the GPU cache, the
calling thread holds the read lock to prevent other threads
from concurrently updating the contents of device mem-
ory, ensuring that the device-side mapping from block ID
to cache slot is consistent with the actual contents of the
GPU cache.

4.0.3 MIG Memory Management
In MIG, multiple types of data share the dynamically

managed region of device memory. The main two types of
data are:

• Small objects (hundreds of bytes) storing metadata on
each trace chunk being processed on the GPU.

• Large (kilobytes or megabytes) read-only traveltime
tables that are referenced by traces.

MIG must decide how to partition the dynamic region be-
tween them. Executing a trace chunk on the GPU always
requires one metadata object, and may require transferring
dozens of traveltime tables depending on which traveltime
tables are already stored on the GPU. Establishing an ac-
curate ratio of memory used to store each is important to
improving GPU utilization for MIG.

To determine an appropriate partitioning of the dynam-
ically managed region between metadata objects and trav-
eltime tables, MIG performs a dry run of the main compu-
tational loop to determine 1) how many metadata objects
will be transferred in a microjob, and 2) how many bytes of
traveltime tables will be transferred to the GPU for those
chunks. Using this ratio, MIG statically reserves space in
the dynamic memory region for each type of data in the
same ratio.

Trace chunk metadata objects on the GPU are simply
cached in an appropriately typed array. Caching traveltime
tables efficiently on the GPU is complicated by the fact that
each table can be a different size. We use the memory re-
served for traveltime tables as a single flat array and dy-
namically allocate variably-sized ranges from it to store TT
tables in. The host tracks what device memory isn’t cur-
rently reserved for a TT table, and stores a mapping from
TT table IDs to the device memory addresses they are stored

at. Unreserved device memory is tracked on the host using a
linked list of free memory segments sorted by base address.

In addition to managing this pool of device memory for
TT tables, MIG also pre-allocates a pool of page-locked host
memory that is used to perform asynchronous copies from
the host to the device. This pool of page-locked memory
is managed in the same way as the device-side cache: as a
flat array from which dynamically sized ranges are allocated.
However, the size of the page-locked pool is smaller than the
device-side cache as it only needs to contain tables whose
copies that are in-progress. For our experiments we set the
page-locked pool to a constant size of 2GB. On memory-
constrained systems, this would be reduced.

Managing the TT table cache in MIG is simplified by the
fact that the host is able to determine which traveltime ta-
bles are referenced by a trace chunk before processing it.
Therefore, the execute-refresh-reexecute pattern used for TT
is unnecessary. However, there are three preconditions that
must be satisfied before a trace chunk can be executed on
the device:

1. A trace chunk metadata slot on the device must be
available to transfer this trace chunk’s metadata in to.
Free metadata slots are maintained in a FIFO queue
on the host. When the GPU finishes processing a trace
chunk, it marks that slot as free by setting a host
flag which has been mapped into the device’s address
space. The host checks for freed metadata slots before
processing each trace chunk and adds them to the free
queue.

2. Sufficient space in the device table cache must be avail-
able to store all traveltime tables needed by this trace
chunk. The technique for checking this is shown in
Algorithm 3. First, a list of tables required by this
trace chunk is constructed. Any tables already cached
on the GPU and any duplicates are removed from this
list. The remaining tables are sorted from largest to
smallest to ensure that the allocations which are hard-
est to satisfy are attempted first. Then, the algorithm
iterates over the uncached tables and attempts to al-
locate space in the device table cache for each. If
all allocations succeed, the host-side reference count
for each allocation is set to one and any re-used ta-
bles have their reference counts incremented. As each
trace chunk completes on the GPU, it will decrement
this reference count. When the reference count for a
cached table reaches zero its memory is released.

3. Sufficient space must also be available in the pool of
page-locked host memory to store the traveltime tables
while they are asynchronously transferred to the GPU.

If all allocations succeed, the current trace chunk is grouped
with other trace chunks in the current batch. All trace
chunks in a single batch will be executed together in a single
kernel launch. Unlike the technique used for static schedul-
ing, each of these batches is executed on a single GPU, rather
than across multiple GPUs. As a result, Algorithm 3 must
only find traveltime table cache slots on the same GPU,
which must also be the same GPU as the other trace chunks
in the current batch. If sufficient cache slots can only be

Algorithm 3: Algorithm used to decide if a trace chunk
fits on the GPU memory.

if Trace Chunk Slot Available then
Slots = ∅
for Table in TablesRequired do

if Table Already On Device then
Slots[Table] = Cache[Table]
TablesRequired.remove(Table)

end

end
RemoveDuplicateTables(TableRequired)
SortBySize(TableRequired)
for Table in TableRequired do

Slots[Table] = AllocateSpace(Table->size)
if Slots[Table] == NULL then

ReleaseAllocated(Slots)
Break

end

end
if All Allocations Successful then

for Slot in Slots do
Slot->RefCount += 1

end

end

end

found on a different GPU, the current batch is executed im-
mediately and a new batch is created with the current trace
chunk as its first member. If insufficient cache slots are
available across all GPUs, the current batch is still launched
immediately but the current trace chunk executes on the
host using OpenMP. Failing to find sufficient resources for
a trace chunk indicates that all GPUs are subscribe and
that we will be unable to process another trace chunk on
the GPU for some time. Immediately launching the current
trace batch prevents the contained trace chunks from being
blocked, and means that the resources they are holding can
be freed sooner.

4.1 Summary
This section covered two distinct approaches to support-

ing out-of-core datasets on GPUs, motivated by the unique
requirements of TT and MIG as described in Section 3. In
Section 5 we evaluate the these techniques. In Section 6 we
discuss where these techniques are most relevant and how
these techniques can be generalized to other applications.

5. RESULTS
This section starts by introducing the baseline perfor-

mance improvement that resulted from the porting of a
legacy distributed and multi-threaded KM implementation
to GPUs. We then focus more closely on the overheads as-
sociated with each of the out-of-core memory management
techniques described in Section 4.

5.1 Experimental Setup

5.1.1 Experimental Platform Description
The tests described below were performed on 1, 2, 4, 8, or

16 nodes. The number of nodes used is limited by resource
availability on the production cluster. Table 1 presents the

Table 1: Compute node configuration. Each com-
puting node sports 3 accelerators, and 2 host pro-
cessors. GDDR5 is a variant of DDR3. Each K10
card sports two GK104 processors

Item Host Processor Accelerator

Machine Type x86 64 GPGPU
Model Intel Xeon E5-2670 NVIDIA K10
Cores 16 1536x2

Frequency 2.60 GHz 745 MHz
Memory Total 64 GB DDR3 (4x2) GB GDDR5

hardware resources available in each node. Compute nodes
are connected by 10 Gbit/s Ethernet and share access to a
Panasas parallel filesystem. For our TT experiments we use
cache blocks of size 32 times 32 times 32 cells.

5.1.2 Input Datasets Description
The input dataset to the TT stage of the KM pipeline is

primarily composed of a single 11.95GB three-dimensional
matrix, the velocity model. The output of running TT on
this dataset is a single 1.12GB traveltime matrix. The peak
memory utilization of a single TT microjob is 18.52 GB.

The input to MIG consists of 24,000,000 traces. The trav-
eltime tables read by each trace range from a few hundred
kilobytes to 20 megabytes in size. All datasets hold real
data used in hydrocarbon exploration, and some of output
datasets were later used in decision making workflows. The
peak memory utilization of a single MIG microjob is 73.23
GB.

5.2 Overall Application Performance
Tables 2 and 3 list the overall performance of the legacy

and GPU implementations of KM running TT and MIG on
a varying number of nodes. MIG achieves higher speedup
than TT due to more regular computation that is better
suited for GPU execution.

Neither the legacy or GPU implementations show perfect
scalability for TT or MIG. The distributed system design
consists of a single master node coordinating many worker
nodes. The master node acts as a single bottleneck for the
whole system, reducing scalability. However, no loss of scal-
ability is observed for the GPU implementation.

The only outlier in these results is the GPU implementa-
tion running MIG on 16 nodes, where we observe a speedup
of only 5.02x and scalability of only 1.26x relative to an 8-
node GPU run. For this test, a single task sits on the critical
path of the application, limiting overall speedup.

Table 2: TT Overall performance measurements.
Speedup is computed with respect to the legacy im-
plementation.

Nodes Legacy GPU Speedup

1 522,683,687 ms 197,304,873 ms 2.65x
2 262,785,314 ms 97,675,037 ms 2.69x
4 136,127,437 ms 55,244,779 ms 2.46x
8 75,380,638 ms 29,965,100 ms 2.52x
16 42,170,935 ms 17,668,498 ms 2.39x

5.3 TT Performance Analysis

Table 3: MIG Overall performance measurements.
Speedup is computed with respect to the legacy im-
plementation.

Nodes Legacy GPU Speedup

1 590,894,312 ms 67,738,228 ms 8.72x
2 294,213,144 ms 32,060,760 ms 9.18x
4 152,519,695 ms 16,381,245 ms 9.31x
8 80,803,623 ms 8,755,180 ms 9.23x
16 34,937,989 ms 6,960,823 ms 5.02x

In the following sections, we will focus on in-depth perfor-
mance analysis of the dynamic memory management tech-
niques used in TT. Later sections will turn to MIG and
perform a similar analysis.

5.3.1 TT GPU Memory Utilization
In this section, we look at GPU memory utilization in

TT. For the results presented here, a single node run was
performed while GPU utilization was sampled every three
seconds with nvidia-smi.

Figure 1 contains a plot of GPU memory utilization for
each GPU in the node, but the individual lines overlap com-
pletely. The TT implementation makes all GPU memory
allocations at the very start of the microjob and does not
free them until the end, keeping memory utilization high
throughout.

Figure 1: TT GPU Memory Utilization

5.3.2 Effectiveness of Device-Side Caching Techniques
in TT

To understand how effective the memory management
techniques used in TT are, it is important to study two
metrics: utilization of the caches and overhead added. We
calculate utilization and overhead by parsing diagnostic logs
generated.

Figure 2 shows the utilization of cache slots on all six
GPUs in a single TT node. We climb to 100% utilization of
5,401 cache slots on each GPU and remain there for ∼85%
of the microjob.

We also measure that ∼7.58% of CPU time is spent man-
aging the TT table cache, including CPU cycles spent in

management functions and CPU time spent transferring data
to the GPU cache over the PCIe bus. This is the result of a
large number of cache updates, with an average of 46.57
cache updates and 46.46 evictions per cache refresh and
302,966 cache refreshes in total. We calculate that ∼0.91
ms is spent per cache update. The overhead introduced is
small enough that the application still achieves a perfor-
mance benefit over the legacy implementation.

Figure 2: TT Device-Side Cache Utilization

5.4 MIG Performance Analysis
The preceding sections analyzed the performance of TT’s

memory management techniques. In the following sections,
we analyze the performance of MIG’s memory management
using similar metrics.

5.4.1 MIG Memory Utilization
The same methodology was used to study MIG memory

utilization as was used for TT in Section 5.3.1.
Figure 3 shows the utilization of GPU memory in a single

node run of MIG. MIG GPU memory utilization fluctuates
over time much more than in TT. MIG dynamically allocates
and deallocates GPU memory more frequently than TT.
For the majority of MIG execution GPU memory utiliza-
tion oscillates between 90% and 100%, indicating that when
a workload is applied and the application is not blocked
performing 1) I/O, 2) pre-processing, or 3) post-processing,
GPU resources are well-utilized.

5.4.2 Effectiveness of Device-Side Caching Techniques
in MIG

In this section, we study the utilization and overhead of
the MIG GPU-side caches.

Figure 4 shows the utilization of table and buffer slots for
MIG running on a single GPU. We are able to keep meta-
data buffer slots well-utilized with an average utilization of
94.39% across the microjob. Table cache usage is erratic,
but at its maximum reaches 80.82% utilization. Given that
the table cache is partitioned dynamically, even utilization
levels of less than 100% may fail allocation requests if a
sufficiently large piece of contiguous GPU memory is not
available.

Figure 3: MIG GPU Resource Utilization

Further, log analysis shows that this microjob’s ability to
execute traces on the GPU is entirely bound by the travel-
time table cache. Execution only reverts to the CPU when
table memory allocation failed, and never due to metadata
buffer slot exhaustion.

We find that MIG spends 13.61% of execution time man-
aging the cache, a much higher percentage than was ob-
served in TT. This is a result of MIG’s more complex cache,
supporting dynamically sized GPU cache slots. Future work
on the MIG cache management should focus on more intel-
ligent ways of creating dynamically sized table slots, with
the goal of achieving higher than ∼80% utilization of GPU
cache memory and reducing overheads.

Figure 4: MIG Device-Side Cache Utilization

5.5 Summary
The preceding sections summarized the performance, over-

head, and memory utilization of a GPU implementation of
KM. We considered overall speedup, demonstrating that the
GPU port still outperforms an equivalent and performant
legacy KM implementation. We then looked at the memory
utilization achieved by each technique to understand if ei-

ther led to under-utilized hardware. We also evaluated the
overhead added by supporting out-of-core datasets. This
evaluation shows that while out-of-core dataset support does
add significant overhead to our GPU implementation, it is
not so significant that it offsets the performance benefit of
GPU execution.

6. DISCUSSION
In this paper, we presented two different device memory

management techniques that use device memory as a cache
for large, out-of-core data structures in host memory.

The MIG caching technique was designed for a kernel
where the data access patterns of a single kernel instance
are known prior to launching that kernel. However, MIG’s
caching mechanism must also support caching variably sized
matrices. The dynamic device memory management sys-
tem described in Section 4.0.3 utilizes 80.80% of the dy-
namically partitioned cache. Dynamically managing GPU
memory adds overhead as it must search for a best-fit mem-
ory segment for each matrix being transferred to the GPU.
13.61% of total execution time is spent managing this cache
(which includes time spent transferring data to the GPUs).
Future work will investigate a system that statically parti-
tions device memory into variably sized cache slots, which
would remove the overhead of the dynamic memory man-
agement system while allowing for a better fit between slot
and matrix sizes.

TT used an on-demand caching technique that optimisti-
cally executed kernels without the ability to predict if all
data dependencies were satisfied on the GPU. This approach
is flexible, generally applicable, and adaptable to future code
changes. In our experiments, 100% cache utilization was
achieved. However, this approach adds overhead from 1) the
bookkeeping necessary to detect unsatisfied data dependen-
cies, 2) from blocking execution/transfers, and 3) from re-
tried kernel executions as a result of unsatisfied data depen-
dencies. We measured 7.58% of total execution time in TT
being consumed by cache management operations, includ-
ing transferring data to the GPU. However, this on-demand
approach was primarily selected as a robust technique that
would remain useful through changes to the algorithms used,
as it is generally useful for processing of any out-of-core read-
only matrix. Future work will include investigation into
more intelligent caching algorithms that reduce the num-
ber of data blocks transferred across the PCIe bus, as well
as techniques for reducing the amount of blocking transfers
and blocking kernel executions necessary in our design. For
example, taking a double-buffering approach would allow
for computation-communication overlap but would greatly
complicate the logic necessary to maintain cache coherency
on the GPU.

Looking forward, physically or virtually shared, coherent
host-accelerator address spaces are becoming more common
(e.g., AMD APUs, CUDA Unified Memory). Porting KM-
H to one of these platforms would greatly simplify the MIG
and TT caching techniques used in this work. Depending
on the platform used, these techniques may even become
unnecessary. Future work will compare the performance of
these automatic approaches to our manual, workload-tuned
implementation.

7. CONCLUSION

In this paper we describe techniques for supporting out-
of-core datasets on GPU accelerators, focusing on a single
geophysical application containing many kernels that exhibit
different memory access characteristics. We demonstrate
two techniques for supporting out-of-core datasets based on
the different constraints of two different stages of the KM
application and evaluate the overhead added by these tech-
niques as well as the memory utilization they achieve. We
also discussed how these techniques could be generalized to
other applications.

Our results demonstrate that using these out-of-core mem-
ory management techniques results in 80-100% GPU mem-
ory utilization while adding 7-13% of overhead. These over-
heads are offset by the performance improvement from us-
ing GPUs and using the memory management techniques
described in this paper improves the flexibility of the overall
application.

As dataset sizes, working set sizes, and application preci-
sion requirements all continue to outstrip GPU memory sizes
the important of out-of-core memory management techniques
on accelerators grows. It is generally accepted that reaching
exascale computing will require some form of heterogeneous
computing in which accelerators form the computational en-
gine of future computing clusters. If those future computing
clusters are to be able to support future application require-
ments, techniques like the ones presented in this paper will
be necessary to ensure that their applicability is not limited
to in-memory, regular problems.

Keywords
Distributed, Heterogeneous, GPU, resource management

8. REFERENCES
[1] CUDA Unified Memory. http://devblogs.nvidia.

com/parallelforall/unified-memory-in-cuda-6/.

[2] B. Budge, T. Bernardin, J. A. Stuart, S. Sengupta,
K. I. Joy, and J. D. Owens. Out-of-core data
management for path tracing on hybrid resources. In
Computer Graphics Forum, volume 28, pages 385–396.
Wiley Online Library, 2009.

[3] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson,
S. R. Beard, and D. I. August. Automatic cpu-gpu
communication management and optimization. In ACM
SIGPLAN Notices, volume 46, pages 142–151, 2011.

[4] G. Jin, T. Endo, and S. Matsuoka. A parallel
optimization method for stencil computation on the
domain that is bigger than memory capacity of gpus. In
Cluster Computing (CLUSTER), 2013 IEEE
International Conference on, pages 1–8. IEEE, 2013.

[5] V. Kindratenko. Numerical Computations with GPUs.
Springer, 2014.

[6] J. Panetta et al. Accelerating kirchhoff migration by
cpu and gpu cooperation. In Computer Architecture
and HPC. SBAC-PAD ’09. 21st International
Symposium on, pages 26–32, Oct 2009.

[7] K. Shirahata, H. Sato, and S. Matsuoka. Out-of-core
gpu memory management for mapreduce-based
large-scale graph processing. In Cluster Computing
(CLUSTER), 2014 IEEE International Conference on,
pages 221–229. IEEE, 2014.

[8] Wiggins, J. W. Kirchhoff integral extrapolation and
migration of nonplanar data. In Geophysics, 1984.

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

	Introduction
	Related Work
	Target Application and Problem Description
	TT Memory Accesses
	MIG Memory Accesses
	Summary

	Methodology
	High Level Memory Management Design
	TT Memory Management
	MIG Memory Management

	Summary

	Results
	Experimental Setup
	Experimental Platform Description
	Input Datasets Description

	Overall Application Performance
	TT Performance Analysis
	TT GPU Memory Utilization
	Effectiveness of Device-Side Caching Techniques in TT

	MIG Performance Analysis
	MIG Memory Utilization
	Effectiveness of Device-Side Caching Techniques in MIG

	Summary

	Discussion
	Conclusion
	References

